The feeding ecology of striped dolphin, Stenella coeruleoalba, in the north-western Mediterranean Sea was studied using stable isotope analyses. Carbon and nitrogen stable isotope ratios were measured in skin and muscle tissues of stranded and by-caught dolphins from six geographical areas in the Mediterranean Sea and Atlantic Ocean. Variation in δ15N in relation to dolphin size is attributed to changes in diet. Nursing calves have a higher trophic level than weaned animals and their δ15N values decrease progressively until weaning, estimated to be at a body length of around 155 cm. δ15N values then increased for larger individuals which suggests changes in diet for mature dolphins. Geographical differences in diet were apparent between the Atlantic and the Mediterranean, although no clear differences were apparent between the five Mediterranean areas. Comparisons of the nitrogen isotope ratios of skin and muscle highlighted a higher fractionation in skin compared to the muscle tissue. Values of δ13C also increased with body length although it appears that this is not only driven by trophic level enrichment. δ13C increases before weaning and the difference in trophic level between newly-weaned and mature dolphins was twice as high for carbon as for nitrogen. Ontogenetic changes in carbon isotope composition may therefore be driven by feeding on deep water prey and dolphin movements outside the coastal feeding grounds. Indeed, seasonal variations in δ13C are suspected to be driven by migration within the Mediterranean basin.