We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The authors assessed the association of physical function, social variables, functional status, and psychiatric co-morbidity with cognitive function among older HIV-infected adults.
Design:
From 2012–2014, a cross-sectional study was conducted among HIV-infected patients ages 50 or older who underwent comprehensive clinical geriatric assessment.
Setting:
Two San Francisco HIV clinics.
Participants:
359 HIV-infected patients age 50 years or older
Measurements
Unadjusted and adjusted Poisson regression measured prevalence ratios and 95% confidence intervals for demographic, functional and psychiatric variables and their association with cognitive impairment using a Montreal Cognitive Assessment (MoCA) score < 26 as reflective of cognitive impairment.
Results
Thirty-four percent of participants had a MoCA score of < 26. In unadjusted analyses, the following variables were significantly associated with an abnormal MoCA score: born female, not identifying as homosexual, non-white race, high school or less educational attainment, annual income < $10,000, tobacco use, slower gait speed, reported problems with balance, and poor social support. In subsequent adjusted analysis, the following variables were significantly associated with an abnormal MoCA score: not identifying as homosexual, non-white race, longer 4-meter walk time, and poor social support. Psychiatric symptoms of depressive, anxiety, and post-traumatic stress disorders did not correlate with abnormal MoCA scores.
Conclusions:
Cognitive impairment remains common in older HIV-infected patients. Counter to expectations, co-morbid psychiatric symptoms were not associated with cognitive impairment, suggesting that cognitive impairment in this sample may be due to neurocognitive disorders, not due to other psychiatric illness. The other conditions associated with cognitive impairment in this sample may warrant separate clinical and social interventions to optimize patient outcomes.
The Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) were compared with and without the addition of a brief processing speed test, the symbol digit modalities test (SDMT), for vascular cognitive impairment (VCI) screening at three to six months after stroke.
Methods:
Patients with ischemic stroke and transient ischemic attack were assessed with MoCA and MMSE, as well as a formal neuropsychological battery three to six months after stroke. VCI was defined by impairment in any cognitive domain on neuropsychological testing. The area under the receiver operating characteristic curve (AUC) was used to compare test discriminatory ability.
Results:
One hundred and eighty-nine patients out of 327 (58%) had VCI, of whom 180 (95%) had vascular mild cognitive impairment (VaMCI), and nine (5%) had dementia. The overall AUCs of the MoCA and MMSE scores and performance at their respective cut-off points were equivalent in detecting VCI (AUCs: 0.87 (95% CI 0.83–0.91) vs. 0.84 (95% CI 0.80–0.88), p = 0.13; cut-offs: MoCA (≤23) vs. MMSE (≤26), sensitivity: 0.78 vs. 0.71; specificity: 0.80 vs. 0.82; positive predictive value: 0.84 vs. 0.84; negative predictive value: 0.72 vs. 0.67; and correctly classified 78.6% vs. 75.5%; p = 0.42). The AUCs of MMSE and MoCA were improved significantly by the SDMT (AUCs: MMSE+SDMT 0.90 (95% CI 0.87–0.93), p <0.001; MoCA+SDMT 0.91 (95% CI 0.88–0.94), p < 0.02).
Conclusions:
The MoCA and MMSE are equivalent and moderately sensitive, and can be supplemented with the SDMT to improve their accuracy in VCI screening.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.