We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The paper presents the experimental work developed by the authors for the identification of rotordynamic coefficients of air bearings. Air bearings work at very high rotation speeds and are known to have nonlinear dynamic characteristics depending at least on the excitation frequency. The paper presents two very similar test rigs, the testing procedure and the algorithm for identifying the rotordynamic coefficients. The test rigs consist of a rigid rotor guided by fixed bearings and driven by a spindle. The dynamic loads are applied by two orthogonally mounted shakers applying two linear independent excitations. Two air bearings are analysed in the present paper. The test procedure is first developed for a simple circular bearing with easily predictable dynamic characteristics. Its rotordynamic coefficients are identified by using a least square procedure based on rational functions. The coefficients are compared to theoretical results in order to underline the limits of the identification algorithm. The procedure is next applied to a first generation foil bearing. Rotordynamic coefficients are presented for different working conditions (static loads and rotation speeds) and are discussed comparing them to circular air bearings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.