We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present several results that rely on arguments involving the combinatorics of “bushy trees”. These include the fact that there are arbitrarily slow-growing diagonally noncomputable (DNC) functions that compute no Kurtz random real, as well as an extension of a result of Kumabe in which we establish that there are DNC functions relative to arbitrary oracles that are of minimal Turing degree. Along the way, we survey some of the existing instances of bushy tree arguments in the literature.
Classes of forcings which add a real by forcing with branching conditions are examined, and conditions are found which guarantee that the generic real is of minimal degree over the ground model. An application is made to almost-disjoint coding via a real of minimal degree.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.