We say that an uncountable metric space is computably categorical if every two computable structures on this space are equivalent up to a computable isometry. We show that Cantor space, the Urysohn space, and every separable Hilbert space are computably categorical, but the space [0, 1] of continuous functions on the unit interval with the supremum metric is not. We also characterize computably categorical subspaces of ℝn, and give a sufficient condition for a space to be computably categorical. Our interest is motivated by classical and recent results in computable (countable) model theory and computable analysis.