We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This communication designs and investigates a twin-port microstrip antenna loaded with a metasurface (MS). The proposed MS works in two ways: (i) artificial ground plane for radiator and (ii) as an ideal absorber of normal incoming waves at the same time. A stair shaped slot is loaded on rectangular patch for creating circularly polarized wave in between 835–894 MHz. Antenna port slots oriented in a mirror manner increase isolation by 25 dB. To act as a validation tool, the suggested antenna was built and its executions in individually operating modes evaluated by statistical and experimental analysis. It is shown that combining the patch and absorber results in a well-matched antenna in between 710–980 MHz with improved gain (more than 3.0 dBi). The proposed antenna design effectively used for UHF (Ultra High Frequency)radio-frequency identification (RFID) applications, which is due to its ability to mitigate multipath reflection issues and incorrectRFID reading.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.