The Maures Massif forms an important piece of the southernmost part of the Variscan belt
of western Europe. This massif exhibits high-grade bimodal felsic–basic volcanic complexes, a distinctive
lithological feature documented elsewhere in similar domains of the European Variscides and
referred to the Cambro-Ordovician extensional episode. Two major alkalic and tholeiitic compositional
groups and subordinate transitional metabasites have been identified, occurring at several distinct
horizons or in bimodal complexes. This chemical diversity is interpreted in terms of variable
degrees of partial melting of progressively depleted mantle source(s), which experienced melting at
different depths, from garnet to spinel stability domains, during a progressive mantle upwelling associated
with intracontinental rifting. This setting is reinforced by the presence of metabasites with compositions
similar to continental flood basalts, showing slightly humped REE patterns, and interpreted
as resulting from the melting of a partially depleted source at a relatively low degree of melting, in the
garnet–spinel transition zone. The metafelsites from the tholeiitic bimodal complex exhibit the distinctive
major and trace element characteristics of A-type rhyolites. Their elemental variations are consistent
with fractional crystallization of major and accessory phases, but some discontinuous REE
profiles result from a hydrothermal fractionation mechanism. The modelling of common anhydrous
fractionating assemblages suggests that these A-type compositions may be derived from the associated
tholeiites by extensive degrees of fractionation (90 %) with some continental crust involvement, or by
anhydrous partial melting (∼30 %) of an underplated mafic parent of tholeiitic composition. The
bimodal character of the Late Cambrian Maures magmatism, together with the chemistry of the various
metabasites and metafelsites, suggests plume-induced intracontinental magmatic activity, resulting
in lithospheric thinning prior to the onset of rifting and break-up of the Palaeozoic continental
lithosphere, at this northern margin of Gondwana.