We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early recognition of an acute myocardial infarction (AMI) can increase the patient’s likelihood of survival. As the first point of contact for patients accessing medical care through emergency services, emergency medical dispatchers (EMDs) represent the earliest potential identification point for AMIs. The objective of the study was to determine how AMI cases were coded and prioritized at the dispatch point, and also to describe the distribution of these cases by patient age and gender.
Hypothesis/Problem
No studies currently exist that describe the EMD’s ability to correctly triage AMIs into Advanced Life Support (ALS) response tiers.
Methods
The retrospective descriptive study utilized data from three sources: emergency medical dispatch, Emergency Medical Services (EMS), and emergency departments (EDs)/hospitals. The primary outcome measure was the distributions of AMI cases, as categorized by Chief Complaint Protocol, dispatch priority code and level, and patient age and gender. The EMS and ED/hospital data came from the Utah Department of Health (UDoH), Salt Lake City, Utah. Dispatch data came from two emergency communication centers covering the entirety of Salt Lake City and Salt Lake County, Utah.
Results
Overall, 89.9% of all the AMIs (n=606) were coded in one of the three highest dispatch priority levels, all of which call for ALS response (called CHARLIE, DELTA, and ECHO in the studied system). The percentage of AMIs significantly increased for patients aged 35 years and older, and varied significantly by gender, dispatch level, and chief complaint. A total of 85.7% of all deaths occurred among patients aged 55 years and older, and 88.9% of the deaths were handled in the ALS-recommended priority levels.
Conclusion
Acute myocardial infarctions may present as a variety of clinical symptoms, and the study findings demonstrated that more than one-half were identified as having chief complaints of Chest Pain or Breathing Problems at the dispatch point, followed by Sick Person and Unconscious/Fainting. The 35-year age cutoff for assignment to higher priority levels is strongly supported. The Falls and Sick Person Protocols offer opportunities to capture atypical AMI presentations.
ClawsonJJ, GardettI, ScottG, FivazC, BarronT, BroadbentM, OlolaC. Hospital-Confirmed Acute Myocardial Infarction: Prehospital Identification Using the Medical Priority Dispatch System. Prehosp Disaster Med. 2018;33(1):29–35.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.