We derive an evolution equation for the free-surface dynamics of a thin film of a second-grade fluid over an unsteady stretching sheet using long-wave theory. For the numerical investigation of the viscoelastic effect on the thin-film dynamics, a finite-volume approach on a uniform grid with implicit flux discretization is applied. The present results are in excellent agreement with results available in the literature for a Newtonian fluid. We observe that the fluid thins faster with the rapid stretching rate of the sheet, but the second-grade parameter delays the thinning behaviour of the liquid film.