We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$. Further, we generalize the concept of acceptance domains to locally compact second countable groups.
Let $\pi$ be a discrete group, and let $G$ be a compact-connected Lie group. Then, there is a map $\Theta \colon \mathrm {Hom}(\pi,G)_0\to \mathrm {map}_*(B\pi,BG)_0$ between the null components of the spaces of homomorphisms and based maps, which sends a homomorphism to the induced map between classifying spaces. Atiyah and Bott studied this map for $\pi$ a surface group, and showed that it is surjective in rational cohomology. In this paper, we prove that the map $\Theta$ is surjective in rational cohomology for $\pi =\mathbb {Z}^m$ and the classical group $G$ except for $SO(2n)$, and that it is not surjective for $\pi =\mathbb {Z}^m$ with $m\ge 3$ and $G=SO(2n)$ with $n\ge 4$. As an application, we consider the surjectivity of the map $\Theta$ in rational cohomology for $\pi$ a finitely generated nilpotent group. We also consider the dimension of the cokernel of the map $\Theta$ in rational homotopy groups for $\pi =\mathbb {Z}^m$ and the classical groups $G$ except for $SO(2n)$.
Let G be a compact connected Lie group, and let $\operatorname {Hom}({\mathbb {Z}}^m,G)$ be the space of pairwise commuting m-tuples in G. We study the problem of which primes $p \operatorname {Hom}({\mathbb {Z}}^m,G)_1$, the connected component of $\operatorname {Hom}({\mathbb {Z}}^m,G)$ containing the element $(1,\ldots ,1)$, has p-torsion in homology. We will prove that $\operatorname {Hom}({\mathbb {Z}}^m,G)_1$ for $m\ge 2$ has p-torsion in homology if and only if p divides the order of the Weyl group of G for $G=SU(n)$ and some exceptional groups. We will also compute the top homology of $\operatorname {Hom}({\mathbb {Z}}^m,G)_1$ and show that $\operatorname {Hom}({\mathbb {Z}}^m,G)_1$ always has 2-torsion in homology whenever G is simply-connected and simple. Our computation is based on a new homotopy decomposition of $\operatorname {Hom}({\mathbb {Z}}^m,G)_1$, which is of independent interest and enables us to connect torsion in homology to the combinatorics of the Weyl group.
In this paper, the well-known multiplicative extended Kalman filter (MEKF) is re-investigated for attitude estimation using vector observations. From the Lie group theory, it is shown that the attitude estimation model is group-affine and its error state model should be trajectory-independent. Moreover, with such a trajectory-independent error state model, the linear Kalman filter is still effective for large initialisation errors. However, the measurement model of the traditional MEKF is dependent on the attitude prediction, which is therefore trajectory-dependent. This is also the main reason why the performance of traditional MEKF is degraded for large initialisation errors. Through substitution of the attitude prediction related term with vector observations in the body frame, a trajectory-independent measurement model is derived for MEKF. Meanwhile, MEKFs with reference attitude error definition and with global state formulating on special Euclidean group have also been studied, with the main focus on derivation of the trajectory-independent measurement models. Extensive Monte Carlo simulations of spacecraft attitude estimation implementations demonstrate that the performance of MEKFs can be much improved with trajectory-independent measurement models.
In this chapter, one aim is to study spaces of mappings taking their values in a Lie group. It will turn out that these spaces carry again a natural Lie group structure. However, before we prove this, the definition and basic properties of (infinite dimensional) Lie groups and their associated Lie algebras are recalled. Infinite-dimensional Lie theory (beyond Banach spaces) is by comparison relatively young and in its modern form goes back to Milnor’s seminal works. One key feature of infinite-dimensional Lie theory is that the conncection between Lie algebra and Lie group is looser then in finite dimensions. For advanced tools in Lie theory one has to require the Lie group to be regular (in the sense of Milnor). These concepts are introduced and considered for several main classes of examples, such as the diffeomorphism groups, loop groups and gauge groups.
Introducing foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, this text is based on Bastiani calculus. It focuses on two main areas of infinite-dimensional geometry: infinite-dimensional Lie groups and weak Riemannian geometry, exploring their connections to manifolds of (smooth) mappings. Topics covered include diffeomorphism groups, loop groups and Riemannian metrics for shape analysis. Numerous examples highlight both surprising connections between finite- and infinite-dimensional geometry, and challenges occurring solely in infinite dimensions. The geometric techniques developed are then showcased in modern applications of geometry such as geometric hydrodynamics, higher geometry in the guise of Lie groupoids, and rough path theory. With plentiful exercises, some with solutions, and worked examples, this will be indispensable for graduate students and researchers working at the intersection of functional analysis, non-linear differential equations and differential geometry. This title is also available as Open Access on Cambridge Core.
The project of Greenlees et al. on understanding rational G-spectra in terms of algebraic categories has had many successes, classifying rational G-spectra for finite groups, SO(2), O(2), SO(3), free and cofree G-spectra as well as rational toral G-spectra for arbitrary compact Lie groups. This chapter provides an introduction to the subject in two parts. The first discusses rational G-Mackey functors, the action of the Burnside ring and change of group functors. It gives a complete proof of the well-known classification of rational Mackey functors for finite G. The second part discusses the methods and tools from equivariant stable homotopy theory needed to obtain algebraic models for rational G-spectra. It gives a summary of the key steps in the classification of rational G-spectra in terms of a symmetric monoidal algebraic category. Having these two parts in the same place allows one to see clearly the analogy between the algebraic and topological classifications.
It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux, arise naturally in the study of topological groups with no small subgroups, of Banach or normed algebra elements whose powers are close to identity along subsequences, and in characterizations of (self-adjoint) positive operators by the accretiveness of some of their powers. The common core of these results is a description of those sequences for which non-identity elements in Lie groups or normed algebras escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given sequence. Several spectral characterizations of Jamison sequences are given, and other related results are proved.
For certain pairs of Lie groups (G, H) and primes p, Harris showed a relation of the p-localized homotopy groups of G and H. This is reinterpreted as a p-local homotopy equivalence G ≃ (p)H × G/H, and so there is a projection G(p) → H(p). We show how much this projection preserves the higher homotopy associativity.
This paper aims at estimating the tremor torque using extended Kalman filter (EKF) applied to a two-link 3-DOF robot with nonlinear dynamics modelled using Lie-group and Lie-algebra theory. Later, it is generalised to d number of links with (d + 1) -DOF. The configuration of each link at any time is described by its rotation relative to the preceding link. Using this formulation, an elegant formula for the kinetic energy of the (d + 1) -DOF system is obtained as a quadratic form in the angular velocities with coefficients being highly nonlinear trigonometric functions of the angles. Properties of the Lie algebra generators and the Lie adjoint map are used to arrive at this expression. Further, the gravitational potential energy and the torque potential energy are expressed as nonlinear trigonometrical functions of the angles using properties of the SO(3) group. The input torque comprises a nonrandom intentional torque component and a highly nonlinear tremor torque component. The tremor torque is modelled as a stochastic differential equation (sde) satisfying Ornstein–Uhlenbeck (OU) process with diffusion and damping coefficients. Further, the tremor is treated as the disturbance. The Euler–Lagrange equations for the angles are derived. These form a system of sdes, and the EKF is used to get a more accurate disturbance estimate than that provided by the usual disturbance observer. The EKF is based on noisy angle measurements and yields as a bonus the angle and angular velocity estimates on a real-time basis. The parameters in the OU process model of the tremor torque, and parameters of the Fourier components of the intentional torque have also been estimated.
In this chapter, we introduce the basic concepts of symmetries and symmetry groups. After describing groups in general, we focus on Lie groups and their associated Lie algebras. We discuss representations of groups and Lie algebras, in particular irreducible representations, and when representations are equivalent.
In this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e., universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than what is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e., universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than what is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e., universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than what is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e. universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
In this paper, we first discuss the well-posedness of linearizing equations, and then study the stability and unstability of the 3-D compressible Euler Equation, by analysing the existence of saddle point. In addition, we give the existence of local solutions of the compressible Euler equation.
This paper presents a framework for a strapdown Inertial Navigation System (INS) algorithm design by using Lie group and Lie algebra. The general way to solve Lie group differential equations is introduced. Investigations reveal that this general Lie group method provides a simpler unified way to solve differential equations involving direction cosine matrix, quaternion and dual quaternion, which are widely used in INS algorithm design. Furthermore, we also present a new INS algorithm based on the Special Euclidean group se(3) under the guidelines of Lie group method. Analyses show that se(3) algorithm has the same accuracy as a dual quaternion algorithm, this is also justified by numerical simulations. Though the se(3) algorithm has no improvements in accuracy, the general Lie group method used in the design process shows its brevity and uniformity.
Volume-preserving algorithms (VPAs) for the charged particles dynamics is preferred because of their long-term accuracy and conservativeness for phase space volume. Lie algebra and the Baker-Campbell-Hausdorff (BCH) formula can be used as a fundamental theoretical tool to construct VPAs. Using the Lie algebra structure of vector fields, we split the volume-preserving vector field for charged particle dynamics into three volume-preserving parts (sub-algebras), and find the corresponding Lie subgroups. Proper combinations of these subgroups generate volume preserving, second order approximations of the original solution group, and thus second order VPAs. The developed VPAs also show their significant effectiveness in conserving phase-space volume exactly and bounding energy error over long-term simulations.
The method for computing the $p$-localization of the group $\left[ X,\,\text{U}\left( n \right) \right]$, by Hamanaka in 2004, is revised. As an application, an explicit description of the self-homotopy group of $\text{Sp}\left( 3 \right)$ localized at $p\,\ge \,5$ is given and the homotopy nilpotency of $\text{Sp}\left( 3 \right)$ localized at $p\,\ge \,5$ is determined.