Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:49:02.711Z Has data issue: false hasContentIssue false

Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics

Published online by Cambridge University Press:  17 May 2016

Ruili Zhang*
Affiliation:
Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
Jian Liu*
Affiliation:
Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
Hong Qin*
Affiliation:
Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
Yifa Tang*
Affiliation:
LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Yang He*
Affiliation:
Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
Yulei Wang*
Affiliation:
Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
*
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
*Corresponding author. Email addresses:[email protected] (R. Zhang), [email protected] (J. Liu), [email protected] (H. Qin), [email protected] (Y. Tang), [email protected] (Y. He), [email protected] (Y. Wang)
Get access

Abstract

Volume-preserving algorithms (VPAs) for the charged particles dynamics is preferred because of their long-term accuracy and conservativeness for phase space volume. Lie algebra and the Baker-Campbell-Hausdorff (BCH) formula can be used as a fundamental theoretical tool to construct VPAs. Using the Lie algebra structure of vector fields, we split the volume-preserving vector field for charged particle dynamics into three volume-preserving parts (sub-algebras), and find the corresponding Lie subgroups. Proper combinations of these subgroups generate volume preserving, second order approximations of the original solution group, and thus second order VPAs. The developed VPAs also show their significant effectiveness in conserving phase-space volume exactly and bounding energy error over long-term simulations.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W. and Lepping, R. P., Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind measurements, Geophys. Res. Lett., 24 (1997), 927929.Google Scholar
[2]Blandford, R. D. and Ostriker, J. P., Particle acceleration by astrophysical shocks, The Astrophysical Journal, 221 (1978), 2932.Google Scholar
[3]Birdsall, C. K. and Langdon, A. B., Plasma physics via computer simulation, CRC Press, New York, 2004.Google Scholar
[4]Davidson, R. C., Physics of Nonneutral Plasmas, Imperial College Press, London, 2001.CrossRefGoogle Scholar
[5]Feng, K. and Qin, M., The symplectic methods for the computation of Hamiltonian equations, Springer Berlin Heidelberg, 1987.Google Scholar
[6]Feng, K., Symplectic contact and volume-preserving algorithms, Proc. 1st China-Japan Conf on Numer Math, World Scientifc, (1993), 128.Google Scholar
[7]Feng, K. and Shang, Z., Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995), 451463.Google Scholar
[8]Friedel, R. H. W., Reeves, G. D. and Obara, T., Relativistic electron dynamics in the inner magnetosphere-A review, J. Atmos and Sol.-Terr. Phy., 64 (2002), 265282.CrossRefGoogle Scholar
[9]He, Y., Sun, Y., Liu, J. and Qin, H., Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281 (2015), 135147.Google Scholar
[10]Honda, M., Meyer-ter-Vehn, J. and Pukhov, A., Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition, Phys. Rev. Lett., 85 (2000), 21282131.Google Scholar
[11]Jackson, J. D., Classical electrodynamics, Wiley, New York, 1962.Google Scholar
[12]Knoepfel, H. and Spong, D. A., Runaway electrons in toroidal discharges, Nucl. Fusion., 19 (1997), 785829.Google Scholar
[13]McLachlan, R. I. and Quispel, G. R. W., Splitting methods, Acta Numer., 11 (2002), 341434.CrossRefGoogle Scholar
[14]Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y. and Tang, W. M., Why is Boris algorithm so good?, Phys. Plasmas, 20 (2013), 084503.Google Scholar
[15]Shang, Z., KAM theorem of symplectic algorithms for Hamiltonian systems, Numerische Mathematik, 83 (1999), 477496.Google Scholar
[16]Summers, D. and Thorne, R. M., Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108 (2003), 11431154.Google Scholar
[17]Tajima, T. and Dawson, J. M., Laser electron accelerator, Phys. Rev. Lett., 43 (1979), 267270.Google Scholar
[18]Wesson, J., Tokamaks, Oxford University Press, 149, 2011.Google Scholar
[19]Zhang, R., Liu, J., Qin, H., Wang, Y., He, Y. and Sun, Y., Volume-preserving algorithm for secular relativistic dynamics of charged particles, Phys. Plasmas, 22 (2015), 044501.Google Scholar