Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:44:33.784Z Has data issue: false hasContentIssue false

Escaping a Neighborhood Along a Prescribed Sequence in Lie Groups and Banach Algebras

Published online by Cambridge University Press:  02 October 2019

Catalin Badea
Affiliation:
CNRS, Univ. Lille, UMR 8524 - Laboratoire Paul Painlevé, France Email: [email protected]@univ-lille.frURL: http://math.univ-lille1.fr/∼badea/http://math.univ-lille1.fr/∼grivaux/
Vincent Devinck
Affiliation:
Univ. d’Artois, Laboratoire de Mathématiques de Lens, FR2037 CNRS, France Email: [email protected]
Sophie Grivaux
Affiliation:
CNRS, Univ. Lille, UMR 8524 - Laboratoire Paul Painlevé, France Email: [email protected]@univ-lille.frURL: http://math.univ-lille1.fr/∼badea/http://math.univ-lille1.fr/∼grivaux/

Abstract

It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux, arise naturally in the study of topological groups with no small subgroups, of Banach or normed algebra elements whose powers are close to identity along subsequences, and in characterizations of (self-adjoint) positive operators by the accretiveness of some of their powers. The common core of these results is a description of those sequences for which non-identity elements in Lie groups or normed algebras escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given sequence. Several spectral characterizations of Jamison sequences are given, and other related results are proved.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported in part by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-11-LABX-0007-01).

References

Badea, C. and Grivaux, S., Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211(2007), no. 2, 766793. https://doi.org/10.1016/j.aim.2006.09.010CrossRefGoogle Scholar
Badea, C. and Grivaux, S., Size of the peripheral point spectrum under power or resolvent growth conditions. J. Funct. Anal. 246(2007), 302329. https://doi.org/10.1016/j.jfa.2007.02.009CrossRefGoogle Scholar
Badea, C. and Grivaux, S., Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group $\mathbb{Z}$. Actes du 1-er Congrès National de la SMF—Tours, 2016, 37–75, Sémin. Congr., 31, Soc. Math. France, Paris, 2017.Google Scholar
Beidleman, J. C. and Cox, R. H., Topological near-rings. Arch. Math. (Basel) 18(1967), 485492. https://doi.org/10.1007/BF01899488CrossRefGoogle Scholar
Beltiţă, D., Neeb, K.-H., and Karl-Hermann, Finite-dimensional Lie subalgebras of algebras with continuous inversion. Studia Math. 185(2008), 249262. https://doi.org/10.4064/sm185-3-3CrossRefGoogle Scholar
Blecher, D. P. and Wang, Z., Roots in operator and Banach algebras. Integral Equations Operator Theory 85(2016), 6390. https://doi.org/10.1007/s00020-015-2272-zCrossRefGoogle Scholar
Bonsall, F. F. and Duncan, J., Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.10.1007/978-3-642-65669-9CrossRefGoogle Scholar
Carter, R., Segal, G., and Macdonald, I., Lectures on Lie groups and Lie algebras. London Mathematical Society Student Texts, 32, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9781139172882CrossRefGoogle Scholar
Chernoff, P. R., Elements of a normed algebra whose 2nth powers lie close to the identity. Proc. Amer. Math. Soc. 23(1969), 386387. https://doi.org/10.2307/2037178Google Scholar
Cox, R. H., Matrices all of whose powers lie close the identity (Abstract). Amer. Math. Monthly 73(1966), 813.Google Scholar
deLaubenfels, R., Totally accretive operators. Proc. Amer. Math. Soc. 103(1988), 551553. https://doi.org/10.2307/2047178CrossRefGoogle Scholar
DePrima, C. R. and Richard, B. K., A characterization of the positive cone of B(h). 23(1973/74), 163172. https://doi.org/10.1512/iumj.1973.23.23013Google Scholar
Devinck, V., Universal Jamison spaces and Jamison sequences for C 0-semigroups. Studia Math. 214(2013), 7799. https://doi.org/10.4064/sm214-1-5CrossRefGoogle Scholar
Eisner, T. and Grivaux, S., Hilbertian Jamison sequences and rigid dynamical systems. J. Funct. Anal. 261(2011), 20132052. https://doi.org/10.1016/j.jfa.2011.06.001CrossRefGoogle Scholar
Gelfand, I., Zur Theorie der Charaktere der Abelschen topologischen Gruppen. German) Rec. Math. [Mat. Sbornik] N. S. 9(1941), 51, 4950.Google Scholar
Gleason, A. M., Groups without small subgroups. Ann. of Math. (2) 56(1952), 193212. https://doi.org/10.2307/1969795CrossRefGoogle Scholar
Gomilko, A., Wróbel, I., and Zemánek, J., Numerical ranges in a strip. Operator theory 20, Theta Ser. Adv. Math., 6, Theta, Bucharest, 2006, pp. 111-121.Google Scholar
Gorin, E. A., Several remarks in connection with Gel’ fand’s theorems on the group of invertible elements of a Banach algebra. (Russian). Funkcional. Anal. i Priložen. 12(1978), 7071.Google Scholar
Gotô, Morikuni, M. and Yamabe, H., On some properties of locally compact groups with no small subgroup. Nagoya Math. J. 2(1951), 2933.10.1017/S0027763000010011CrossRefGoogle Scholar
Hanoch, G. and Hershkowitz, D., Forcing sequences of positive integers. Czechoslovak Math. J. 45(1995), 120, 149169.10.21136/CMJ.1995.128503CrossRefGoogle Scholar
Hershkowitz, D. and Schneider, H., Matrices with a sequence of accretive powers. Israel J. Math. 55(1986), 327344. https://doi.org/10.1007/BF02765030CrossRefGoogle Scholar
Hershkowitz, D. and Schneider, H., Sequences, wedges and associated sets of complex numbers. Czechoslovak Math. J. 38(1988), 113, 138156.10.21136/CMJ.1988.102207CrossRefGoogle Scholar
Hirschfeld, R. A., On semi-groups in Banach algebras close to the identity. Proc. Japan Acad. 44(1968), 755.CrossRefGoogle Scholar
Hofmann, K. H. and Morris, S. A., The Lie theory of connected pro-Lie groups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact group. EMS Tracts in Mathematics, 2, European Mathematical Society (EMS), Zürich, 2007. https://doi.org/10.4171/032CrossRefGoogle Scholar
Jamison, B., Eigenvalues of modulus 1. Proc. Amer. Math. Soc. 16(1965), 375377. https://doi.org/10.2307/2034656Google Scholar
Johnson, C. R., Powers of matrices with positive definite real part. Proc. Amer. Math. Soc. 50(1975), 8591. https://doi.org/10.2307/2040519CrossRefGoogle Scholar
Kalton, N., Montgomery-Smith, S., Oleszkiewicz, K., and Tomilov, Y., Power-bounded operators and related norm estimates. J. Lond. Math. Soc. (2) 70(2004), 463478. https://doi.org/10.1112/S0024610704005514CrossRefGoogle Scholar
Kaplansky, I., Lie algebras and locally compact groups. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1995.Google Scholar
Li, C.-K., Rodman, L., and Spitkovsky, I. M., On numerical ranges and roots. J. Math. Anal. Appl. 282(2003), 329340. https://doi.org/10.1016/S0022-247X(03)00158-6CrossRefGoogle Scholar
Luminet, D. and Valette, A., Faithful uniformly continuous representations of Lie groups. J. Lond. Math. Soc. (2) 49(1994), 100108. https://doi.org/10.1112/jlms/49.1.100CrossRefGoogle Scholar
Matsaev, V. I. and Palant, Ju. A., On the powers of a bounded dissipative operator. (Russian). Ukrain. Mat. Ž. 14(1962), 329337.Google Scholar
Michor, P. and Teichmann, J., Description of infinite-dimensional abelian regular Lie groups. J. Lie Theory 9(1999), 487489.Google Scholar
Montgomery, D. and Zippin, L., Topological transformation groups. Reprint of the 1955 original, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974.Google Scholar
Morris, S. A. and Pestov, V., On Lie groups in varieties of topological groups. Colloq. Math. 78(1998), 3947. https://doi.org/10.4064/cm-78-1-39-47CrossRefGoogle Scholar
Nagisa, M. and Wada, S., Averages of operators and their positivity. Proc. Amer. Math. Soc. 126(1998), 499506. https://doi.org/10.1090/S0002-9939-98-04070-2CrossRefGoogle Scholar
Nakamura, M. and Yoshida, M., On a generalization of a theorem of Cox. Proc. Japan Acad. 43(1967), 108110.10.3792/pja/1195521691CrossRefGoogle Scholar
Neeb, K.-H., Lectures on infinite dimensional Lie groups. Monastir Summer School, 2005. a https://cel.archives-ouvertes.fr/cel-00391789/document.Google Scholar
Paulos, J., Stability of Jamison sequences under certain perturbations. North-West Eur. J. Math. 5(2019), 8999.Google Scholar
Ransford, T., Eigenvalues and power growth. Israel J. Math. 146(2005), 93110. https://doi.org/10.1007/BF02773528CrossRefGoogle Scholar
Ransford, T. and Roginskaya, M., Point spectra of partially power-bounded operators. J. Funct. Anal. 230(2006), 432445. https://doi.org/10.1016/j.jfa.2005.02.003CrossRefGoogle Scholar
Rosendal, C., Lipschitz structure and minimal metrics on topological groups. Ark. Mat. 56(2018), 185206. https://doi.org/10.4310/ARKIV.2018.v56.n1.a11CrossRefGoogle Scholar
Shiu, E. S. W., Growth of numerical ranges of powers of Hilbert space operators. Michigan Math. J. 23(1976), 155160.Google Scholar
Tao, T., Hilbert’s fifth problem and related topics. Graduate Studies in Mathematics, 153, American Mathematical Society, Providence, RI, 2014.CrossRefGoogle Scholar
Uchiyama, M., Powers and commutativity of selfadjoint operators. Math. Ann. 300(1994), 643647. https://doi.org/10.1007/BF01450506CrossRefGoogle Scholar
Wallen, L. J., On the magnitude of x n - 1 in a normed algebra. Proc. Amer. Math. Soc. 18(1967), 956. https://doi.org/10.2307/2035146Google Scholar
Wils, W., On semigroups near the identity. Proc. Amer. Math. Soc. 21(1969), 762763. https://doi.org/10.2307/2036465Google Scholar
Zemánek, J., On the Gelfand-Hille theorems. In: Functional analysis and operator theory, (Warsaw, 1992). Banach Center Publ. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 369385.Google Scholar