The various mutualistic and antagonistic symbioses between fig trees (Ficus: Moraceae) and chalcid wasps comprise a community in microcosm. Phylogenetic estimates of figs and fig wasps show general topological correspondence, making the microcosm a model system for cophylogeny. Incongruence between phylogenies from associated organisms can be reconciled through a combination of evolutionary events. Cophylogeny mapping reconciles phylogenies by embedding an associate tree into a host tree, finding the optimal combinations of events capable of explaining incongruence and evaluating the level of codivergence. This review addresses the results of cophylogeny analysis concerning Ficus and discusses the plausibility of different evolutionary events. Five different associations encompassing fig-pollinator, fig-parasite and pollinator-parasitoid interactions are reconciled. The method improves on previous comparisons by employing ‘jungles’ to provide an exhaustive and quantitative analysis of cophylogeny. A jungle is a mechanism for inferring host switches and obtaining all potentially optimal solutions to the reconciliation problem. The results support the consensus that figs codiverge significantly with pollinators but not non-pollinators. However, pollinators still appear to have switched between hosts in contradiction to the traditional model of faithful codivergence. This emphasises the growing realisation that evolutionary transitions in the microcosm are more flexible than previously thought and host specificity is necessary but not sufficient for codivergence. The importance of sampling strategy is emphasised by the influence of taxon set on the fig-pollinator and fig-parasite jungles. Spurious significant results for fig-parasite and fig-parasitoid jungles indicate that the choice of congruence measure influences significance; the total number of events required to reconcile two trees (‘total cost’) is not a good measure of congruence when switches cannot be realistically weighted.