In computerized adaptive testing, the most commonly used valuating function is the Fisher information function. When the goal is to keep item bank security at a maximum, the valuating function that seems most convenient is the matching criterion, valuating the distance between the estimated trait level and the point where the maximum of the information function is located. Recently, it has been proposed not to keep the same valuating function constant for all the items in the test. In this study we expand the idea of combining the matching criterion with the Fisher information function. We also manipulate the number of strata into which the bank is divided. We find that the manipulation of the number of items administered with each function makes it possible to move from the pole of high accuracy and low security to the opposite pole. It is possible to greatly improve item bank security with much fewer losses in accuracy by selecting several items with the matching criterion. In general, it seems more appropriate not to stratify the bank.