We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A computerized adaptive test (CAT) is usually administered to small groups of examinees at frequent time intervals. It is often the case that examinees who take the test earlier share information with examinees who will take the test later, thus increasing the risk that many items may become known. Item overlap rate for a group of examinees refers to the number of overlapping items encountered by these examinees divided by the test length. For a specific item pool, different item selection algorithms may yield different item overlap rates. An important issue in designing a good CAT item selection algorithm is to keep item overlap rate below a preset level. In doing so, it is important to investigate what the lowest rate could be for all possible item selection algorithms. In this paper we rigorously prove that if every item has an equal possibility to be selected from the pool in a fixed-length CAT, the number of overlapping items among any α randomly sampled examinees follows the hypergeometric distribution family for α ≥ 1. Thus, the expected values of the number of overlapping items among any randomly sampled α examinees can be calculated precisely. These values may serve as benchmarks in controlling item overlap rates for fixed-length adaptive tests.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.