We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The formation of iron-rich phyllosilicates can occur at different natural or engineered settings. In this study, the influence of pH in the hydrothermal synthesis of iron-rich phyllosilicates was investigated in the pH range 8.50–12.10 after the ageing of the precursor. The synthesized samples were characterized by powder X-ray diffraction, Raman and Mössbauer spectroscopies and transmission electron microscopy. Three domains of pH were identified, and these correlated with silica availability and its speciation in the solution. The formation of 1:1-type FeIII/FeII phyllosilicate was observed between pH 9.67 and 10.75. Above pH 10.75, two types of phyllosilicate-like mineral phases were observed. In addition to 1:1-type FeIII/FeII phyllosilicate, 2:1-type FeIII/FeII phyllosilicate was observed. Below pH 9.67, mainly amorphous silica and iron oxides were observed. The findings show that pH governed the crystallinity and nature of the obtained phyllosilicate-like phases.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.