We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lower-body exoskeleton control that adapts to users and provides assistance-as-needed can increase user participation and motor learning and allow for more effective gait rehabilitation. Adaptive model-based control methods have previously been developed to consider a user’s interaction with an exoskeleton; however, the predefined dynamics models required are challenging to define accurately, due to the complex dynamics and nonlinearities of the human-exoskeleton interaction. Model-free deep reinforcement learning (DRL) approaches can provide accurate and robust control in robotics applications and have shown potential for lower-body exoskeletons. In this paper, we present a new model-free DRL method for end-to-end learning of desired gait patterns for over-ground gait rehabilitation with an exoskeleton. This control technique is the first to accurately track any gait pattern desired in physiotherapy without requiring a predefined dynamics model and is robust to varying post-stroke individuals’ baseline gait patterns and their interactions and perturbations. Simulated experiments of an exoskeleton paired to a musculoskeletal model show that the DRL method is robust to different post-stroke users and is able to accurately track desired gait pattern trajectories both seen and unseen in training.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.