We discuss the issues of implementation of a higher order discontinuous Galerkin (DG)scheme for aerodynamics computations. In recent years a DG method has intensively beenstudied at Central Aerohydrodynamic Institute (TsAGI) where a computational code has beendesigned for numerical solution of the 3-D Euler and Navier-Stokes equations. Ourdiscussion is mainly based on the results of the DG study conducted in TsAGI incollaboration with the NUMECA International. The capacity of a DG scheme to tacklechallenging computational problems is demonstrated and its potential advantages over FVschemes widely used in modern computational aerodynamics are highlighted.