We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter examines the evidence from family or genetic high-risk studies in schizophrenia, an example of a highly heritable, complex neuropsychiatric disorder for which the aetiology and pathophysiology remain elusive. It discusses a rationale for using family/genetic high-risk studies and the concept of endophenotypes. Emphasising applications in schizophrenia research, Gottesman and Gould provide compelling evidence to suggest that further study and identification of endophenotypes hold tremendous promise for clarifying the aetiology and pathophysiology of schizophrenia, and improving its treatment. In addition to the endophenotypes, measurement of olfactory functioning is independent of diagnosis and hence provides a feasible approach, both practically and economically, for assessing abnormal brain function and genetic vulnerability to schizophrenia. Continued investigations of the olfactory system and related abnormalities, and particularly its role as an endophenotype, may aid in unravelling the mysteries of the molecular and genetic underpinnings of schizophrenia and other complex neuropsychiatric diseases.
This chapter reviews the several approaches to investigate premorbid risk for schizophrenia. It presents a critical appraisal of the existing studies focusing on the populations at risk for schizophrenia, the issues surrounding study design, predictive and outcome factors identified so far, and the timing of the studies. Studies of premorbid risk, risk for schizophrenia and prospective studies have utilized genetic propensity, neurobehavioral markers, or psychopathology to identify the risk status. The chapter outlines the potential merits and disadvantages of these strategies, reviews the lessons learned from the early first high-risk (HR) studies and presents a rationale for more focused next-generation studies to examine premorbid risk. Recent advances in developmental neurobiology and neuroscience make it reasonable to expect a paradigm shift in research on schizophrenia. It is hoped that the third millennium will usher in a new generation of research studies on high-risk (HR) populations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.