Let
$R\,=\,{{\oplus }_{n\ge 0}}{{R}_{n}}$
be a graded Noetherian ring with local base ring
$\left( {{R}_{0}},{{\text{m}}_{0}} \right)$
and let
${{R}_{+}}\,=\,{{\oplus }_{n>0}}{{R}_{n}}$
. Let
$M$
and
$N$
be finitely generated graded
$R$
-modules and let
$\mathfrak{a}\,=\,{{\mathfrak{a}}_{0}}\,+\,{{R}_{+}}$
an ideal of
$R$
. We show that
$H_{\mathfrak{b}0}^{j}\,\left( H_{\mathfrak{a}}^{i}\left( M,\,N \right) \right)$
and
${H_{\mathfrak{a}}^{i}\left( M,\,N \right)}/{{{\mathfrak{b}}_{0}}H_{\mathfrak{a}}^{i}\left( M,\,N \right)}\;$
are Artinian for some
$i\text{ s}$
and
$j\,\text{s}$
with a specified property, where
${{\mathfrak{b}}_{o}}$
is an ideal of
${{R}_{0}}$
such that
${{\mathfrak{a}}_{0}}\,+\,{{\mathfrak{b}}_{0}}$
is an
${{\mathfrak{m}}_{0}}$
-primary ideal.