We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous research has shown abnormal functional network gradients in Alzheimer’s disease (AD). Structural network gradient is capable of capturing continuous changes in brain morphology and has the ability to elucidate the underlying processes of neurodevelopment. However, it remains unclear whether structural network gradients are altered in AD and what associations exist between these changes and cognitive function, and gene expression profiles.
Methods
By constructing an individualized structural network gradient decomposition framework, we calculated the morphological similarity network (MSN) gradients for 404 subjects (186 AD patients and 218 normal controls). We investigated AD-related alterations in MSN gradients, along with the associations between MSN gradients and cognitive function, MSN topological properties, and gene expression profiles.
Results
Our findings indicated that the principal MSN gradient alterations in AD were primarily characterized by an increase in the primary and secondary sensory cortices and a decrease in the association cortex 1. The primary and higher-order cortices exhibited opposite associations with cognition, including executive function, language skills, and memory processes. Moreover, the principal MSN gradients were found to significantly predict cognitive function in AD. The altered gradient pattern was 14.8% attributable to gene expression profiles, and the genes demonstrating the highest correlation are involved in metabolic activity and synaptic signaling.
Conclusions
Our results offered novel insights into the underlying mechanisms of structural brain network impairment in AD patients, enhancing our understanding of the neurobiological processes responsible for impaired cognition in patients with AD, and offering a new dimensional structural biomarker for AD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.