A suite of sheared syenites occurring along the western margin of the Eastern Ghats Belt, India have developed extensive flame perthite in K-feldspar. Albite flames show large variation in size, shape and abundance. Field, petrographic and chemical evidence suggests complex interplay between differential stress, recycling of K-Na-Ca and supply of Na by infiltration for the development of flame perthite. Partial replacement of pyroxenes, plagioclase and alkali feldspar by amphibole, biotite, nepheline and calcite causes internal recycling of Na-Ca-K in a closed system. Representative compositions of the minerals are used to constrain the model dissolution–reprecipitation ion-exchange reactions involving Na and K either as reactants and/or as products. A substantial proportion of Na+ required for the development of the albite flames, originates from Na metasomatism accompanied by ductile shearing in the feldspathic rocks, providing an ideal open system wherein both the differential stress and Na+ are made available for the development of the flame perthites. This process probably augmented the replacement of K-feldspar grains by flame albite and the K+ released was carried away by the fluid or, possibly, augmented the biotite-forming reactions in the associated quartz-poor syenites and, hence, trigger the Na-K cycle in these rocks.