Seed treatments are used globally on a wide range of field, vegetable and ornamental seeds, for efficient early season control of insects and diseases. However, specific seed-treatment compounds may be phytotoxic and this phytotoxicity is most acute in laboratory germination tests. Several strategies have been developed to alleviate seed-treatment phytotoxicity that include spatial separation of the pesticide from the seed. This can be accomplished by the application of the active compounds at the end of pelleting or by using a two-pellet system, termed ‘smart-pill technology’. Another approach is to detoxify or adsorb the agrochemical in a standard germination test by applying a peat medium over the seeds in a roll towel or blotter test. Many new seed-treatment chemicals have systemic activity, and the efficacy of these systemic seed treatments depends on the ability of these applied chemical compounds to be absorbed, and then transported in the developing plant. The present article describes seed-coat permeability to systemic seed treatments, examined by monitoring the movement of fluorescent tracers into intact seeds during imbibition. Two moderately lipophilic, fluorescent tracers have been used – rhodamine (ionic) and coumarin (non-ionic) – which differ mainly in electrical charge. Seed-coat permeabilities of particular species have been grouped into three categories: (1) permeable to both tracers; (2) selectively permeable to only coumarin; and (3) non-permeable to both tracers. The ability of a particular compound to diffuse through the seed coat is related to the chemical nature of the seed-covering tissues and the physico-chemical properties of the compound applied.