We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
From observed data, statistical inference infers the properties of the underlying probability distribution. For hypothesis testing, the t-test and some non-parametric alternatives are covered. Ways to infer confidence intervals and estimate goodness of fit are followed by the F-test (for test of variances) and the Mann-Kendall trend test. Bootstrap sampling and field significance are also covered.
Field significance is concerned with testing a large number of hypothesis simultaneously. Previous chapters have discussed methods for testing one hypothesis, such as whether one variable is correlated with one other variable. Field significance is concerned with whether one variable is related to a random vector. In climate applications, a characteristic feature of field significance problems is that the variables in the random vector correspond to quantities at different geographic locations. As such, neighboring variables are correlated and therefore exhibit spatial dependence. This spatial dependence needs to be taken into account when testing hypotheses. This chapter introduces the concept of field significance and explains three hypothesis test procedures: a Monte Carlo method proposed by Livezey and Chen (1983) and an associated permutation test, a regression method proposed by DelSole and Yang (2011), and a procedure to control the false discovery rate, proposed in a general context by Benjamini and Hockberg (1995) and applied to field significance problems by Ventura et al. (2004) and Wilks (2006).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.