We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This investigation was carried out to determine whether the adsorptive and ion-exchange properties of faujasite (FAU) could be used to delivery locally the anticancer drugs gemcitanine hydrochloride (dFdU.HCl) and oxaliplatin (DACH-Pt). A soaking procedure was used for the determination of the maximum adsorption capacity of FAU and the mechanism described here was achieved. 274 mg dFdU.HCl/g FAU were adsorbed in 16 h, while 48 h were needed for the adsorption of 79.7 mg DACH-Pt/g FAU. Drug release studies were carried out by soaking the samples of loaded FAU in simulation body fluids (SBF). After only one hour 76% of dFdU.HCl was released while the release of DACH-Pt from the FAU was more normal since 38% of DACH-Pt was released in the first 24 h.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.