The third-generation (3G) mobile communication system uses a technique called code division multiple access (CDMA), in which multiple users use the same frequency and time domain. The data signals of the users are distinguished using codes. When there are many users, interference deteriorates the quality of the system. For more efficient use of resources, we wish to allow more users to transmit simultaneously, by using algorithms that utilize the structure of the CDMA system more effectively than the simple matched filter (MF) system used in the proposed 3G systems. In this paper, we investigate an advanced algorithm called hard-decision parallel interference cancellation (HD-PIC), in which estimates of the interfering signals are used to improve the quality of the signal of the desired user. We compare HD-PIC with MF in a simple case, where the only two parameters are the number of users and the length of the coding sequences. We focus on the exponential rate for the probability of a bit-error, explain the relevance of this parameter, and investigate how it scales when the number of users grows large. We also review extensions of our results, proved elsewhere, showing that in HD-PIC, more users can transmit without errors than in the MF system.