We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Acetylcholinesterase inhibitors are the focus of interest in the management of schizophrenia. We aimed to investigate the effects of acute galangin administration, a flavonoid compound with acetylcholinesterase inhibiting activity, on schizophrenia-associated cognitive deficits in rats and schizophrenia models in mice.
Methods:
Apomorphine-induced prepulse inhibition (PPI) disruption for cognitive functions, nicotinic, muscarinic, and serotonergic mechanism involvement, and brain acetylcholine levels were investigated in Wistar rats. Apomorphine-induced climbing, MK-801-induced hyperlocomotion, and catalepsy tests were used as schizophrenia models in Swiss albino mice. The effects of galangin were compared with acetylcholinesterase inhibitor donepezil, and typical and atypical antipsychotics haloperidol and olanzapine, respectively.
Results:
Galangin (50,100 mg/kg) enhanced apomorphine-induced PPI disruption similar to donepezil, haloperidol, and olanzapine (p < 0.05). This effect was not altered in the combination of galangin with the nicotinic receptor antagonist mecamylamine (1 mg/kg), the muscarinic receptor antagonist scopolamine (0.05 mg/kg), or the serotonin-1A receptor antagonist WAY-100635 (1 mg/kg) (p > 0.05). Galangin (50,100 mg/kg) alone increased brain acetylcholine concentrations (p < 0.05), but not in apomorphine-injected rats (p > 0.05). Galangin (50 mg/kg) decreased apomorphine-induced climbing and MK-801-induced hyperlocomotion similar to haloperidol and olanzapine (p < 0.05), but did not induce catalepsy, unlike them.
Conclusion:
We suggest that galangin may help enhance schizophrenia-associated cognitive deficits, and nicotinic, muscarinic cholinergic, and serotonin-1A receptors are not involved in this effect. Galangin also exerted an antipsychotic-like effect without inducing catalepsy and may be considered as an advantageous antipsychotic agent.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.