We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.