We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tourniquets (TQs) save lives. Although military-approved TQs appear more effective than improvised TQs in controlling exsanguinating extremity hemorrhage, their bulk may preclude every day carry (EDC) by civilian lay-providers, limiting availability during emergencies.
Study Objective:
The purpose of the current study was to compare the efficacy of three novel commercial TQ designs to a military-approved TQ.
Methods:
Nine Emergency Medicine residents evaluated four different TQ designs: Gen 7 Combat Application Tourniquet (CAT7; control), Stretch Wrap and Tuck Tourniquet (SWAT-T), Gen 2 Rapid Application Tourniquet System (RATS), and Tourni-Key (TK). Popliteal artery flow cessation was determined using a ZONARE ZS3 ultrasound. Steady state maximal generated force was measured for 30 seconds with a thin-film force sensor.
Results:
Success rates for distal arterial flow cessation were 89% CAT7; 67% SWAT-T; 89% RATS; and 78% TK (H 0.89; P = .83). Mean (SD) application times were 10.4 (SD = 1.7) seconds CAT7; 23.1 (SD = 9.0) seconds SWAT-T; 11.1 (SD = 3.8) seconds RATS; and 20.0 (SD = 7.1) seconds TK (F 9.71; P <.001). Steady state maximal forces were 29.9 (SD = 1.2) N CAT7; 23.4 (SD = 0.8) N SWAT-T; 33.0 (SD = 1.3) N RATS; and 41.9 (SD = 1.3) N TK.
Conclusion:
All novel TQ systems were non-inferior to the military-approved CAT7. Mean application times were less than 30 seconds for all four designs. The size of these novel TQs may make them more conducive to lay-provider EDC, thereby increasing community resiliency and improving the response to high-threat events.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.