We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Silicon carbide (SiC) detectors were used to analyze the multi-MeV ions of the plasma produced by irradiation of various targets with a 300-ps laser at intensity of 1016 W/cm2. The SiC detectors were realized by fabricating Schottky diodes on 80 μm epitaxial layer. The low dopant concentration and defect density of the epilayer allowed the realization of good performance detectors. The use of SiC detectors ensures the cutting of the visible and soft ultraviolet radiation emitted from plasma enhancing the sensitivity to very fast ions. The time-of-flight spectra obtained by irradiating different targets show a peak associated to protons and various peaks relative to different charge states of ions. Processing of the experimental data allows to estimate the energies of the protons and of the different ions emitted from laser-induced plasma. The SiC detector results are compared with the ones obtained by Ion Collector and a Thomson Parabola spectrometer.
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
The study of heavy ion stopping dynamics using associated K-shell projectile and target radiation was the focus of the reported experiments. Ar, Ca, Ti, and Ni projectile ions with the initial energies of 5.9 and 11.4 MeV/u were slowed down in quartz and arogels. Characteristic radiation of projectiles and target atoms induced in close collisions was registered. The variation of the projectile ion line Doppler shift due to the ion deceleration measured along the ion beam trajectory was used to determine the ion velocity dynamics. The dependence of the ion velocity on the trajectory coordinate was measured over 70–90% of the ion beam path with a spatial resolution of 50–70 μm. The choice of SiO2 aerogel with low mean densities of 0.04–0.15 g/cm3 as a target material, made it possible to stretch the ion stopping range by more than 20–50 times in comparison with solid quartz. It allowed for resolving the dynamics of the ion stopping process. Experimentally, it has been proven that the fine porous nano-structure of aerogels does not affect the ion energy loss and charge state distribution. The strong increase of the ion stopping range in aerogels made it possible to resolve fast ion radiation dynamics. The analysis of the projectile Kα-satellites structure allows supposing that ions propagate in solid in highly exicted states. This can provide an experimental explanation for so called gas-solid effect.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.