Network meta-analysis allows the synthesis of relative effects from several treatments. Two broad approaches are available to synthesize the data: arm-synthesis and contrast-synthesis, with several models that can be fitted within each. Limited evaluations comparing these approaches are available. We re-analyzed 118 networks of interventions with binary outcomes using three contrast-synthesis models (CSM; one fitted in a frequentist framework and two in a Bayesian framework) and two arm-synthesis models (ASM; both fitted in a Bayesian framework). We compared the estimated log odds ratios, their standard errors, ranking measures and the between-trial heterogeneity using the different models and investigated if differences in the results were modified by network characteristics. In general, we observed good agreement with respect to the odds ratios, their standard errors and the ranking metrics between the two Bayesian CSMs. However, differences were observed when comparing the frequentist CSM and the ASMs to each other and to the Bayesian CSMs. The network characteristics that we investigated, which represented the connectedness of the networks and rareness of events, were associated with the differences observed between models, but no single factor was associated with the differences across all of the metrics. In conclusion, we found that different models used to synthesize evidence in a network meta-analysis (NMA) can yield different estimates of odds ratios and standard errors that can impact the final ranking of the treatment options compared.