We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
from
Section B4
-
Translational research: application to human neural injury
By
Jonathan R. Wolpaw, Laboratory of Nervous System Disorders, Wadsworth Center, NYS Department of Health, Albany, NY, USA,
Niels Birbaumer, Institute Behavioural Neuroscience, Eberhard-Karls-University, Tubingen, Germany
Edited by
Michael Selzer, University of Pennsylvania,Stephanie Clarke, Université de Lausanne, Switzerland,Leonardo Cohen, National Institute of Mental Health, Bethesda, Maryland,Pamela Duncan, University of Florida,Fred Gage, Salk Institute for Biological Studies, San Diego
As a communication and control system, a brain-computer interface (BCI) establishes a real-time interaction between the user and the outside world. Human BCI experience to date has been confined almost entirely to electroencephalographic (EEG) studies and short-term electrocorticographic activity (EcoG) studies. A BCI records brain signals and processes them to produce device commands. This signal processing has two stages. The first stage is feature extraction, the calculation of the values of specific features of the signals. The second stage is a translation algorithm that translates these features into device commands. The eventual extent and impact of BCI applications depend on the speed and precision of the control that can be achieved and on the reliability and convenience of their use. Simple BCI applications appear to have a secure future in their potential to make a difference in the lives of extremely disabled people.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.