The geological disposal of radioactive waste, based on a multi-barrier concept wherein the first barrier consists of the metal waste container and the final barrier the host rock, is widely considered the only viable solution to this issue. The bentonite-based seal around the canister forms one of the barriers. The unique swelling and sealing capabilities of bentonite play a major role in repository safety concepts in that they allow the bentonite barrier to withstand serious mechanical damage without its function being compromised.
This paper presents experimental research focusing on the dynamics and mechanics of the sealing of cracks and joints using bentonite-based materials. Physical models were used to simulate the contact point of bentonite-based sealants with cracks in the rock mass. The models examined the ability of the tested material to fill the crack thus preventing the creation of a preferential water pathway. The results show that in most cases total bentonite advance (for the same material) into fissures is, primarily, linearly dependent on fissure width. The absolute value of advance could be related to the overall swelling ability of the material characterized by its swell index or swelling pressure.