Experiments were conducted during October 1998 in Lake Titicaca, Bolivia (16° S, 68° W, 3810 m a.s.l), to determine the effects of solar ultraviolet radiation (UVR) on phytoplankton photosynthetic rates and DNA damage. Water samples were taken daily and incubated in situ or in simulated in situ conditions using sharp cut-off filters to eliminate various portions of the UVR spectrum. The total inhibition of photosynthesis due to UVR in surface waters was 85%; the greatest part of this inhibition (65%) was due to UVAR (315–400 nm), the rest (20%) being due to UVBR (280–315 nm). The inhibition of photosynthesis decreased with depth so that there were no significant differences among treatments at 1·3 optical depths (KPAR). The loss of carbon assimilation in the integrated production over the euphotic zone (4·6 optical depths) was 17·4%, with 14% due to UVAR and an additional 3·4% due to UVBR. Lake Titicaca phytoplankton had a threshold for inhibition of photosynthesis at about 0·3 W m−2 for UVBR and 5 W m−2 for UVAR, below which no inhibition was detected. Above this threshold, photosynthetic inhibition increased steadily, with UVAR having the greatest effect. Analysis of biological weighting functions (BWFs) indicated that phytoplankton from Lake Titicaca was less sensitive to UVR than phytoplankton from other regions. DNA damage (evaluated through the formation of cyclobutane pyrimidine dimers, CPDs) was observed for a simulated worst-case situation (i.e. samples incubated in full sunlight) and significant CPD accumulation was found as a result of UVBR exposure, but not with UVAR. However, absolute levels of damage were relatively low when compared with results obtained at other locations, also suggesting the low sensitivity of Lake Titicaca phytoplankton to UVR. It seems that UVBR stress in these organisms acts via at least two cellular targets: the photosynthetic apparatus and nuclear DNA. Our results suggest that an eventual enhancement of UVBR, due to ozone depletion, would have little impact on the phytoplankton of Lake Titicaca.