A practical description of the mathematics required to implement the hexagonal grid and spiral trace pole figure data collection schemes is presented. Applying the concepts of stereographic and equal area projections with geometry, spreadsheets were created to calculate the angular settings of the goniometer. Using the generated settings, the hexagonal grid and spiral trace schemes were programmed into the existing X-ray software and employed to collect data for a sample of aluminum foil. The resulting (111) pole figures were similar to those collected with the conventional 5°χ×5°ϕ grid. The hexagonal grid has been shown by others to reduce the number of data points and time needed to complete a pole figure, while providing equal area sampling. Although not optimized, the spiral method was also investigated as another alternative to the 5°χ×5°ϕ grid.