We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the degree structure $\operatorname {\mathrm {\mathbf {ER}}}$ of equivalence relations on $\omega $ under computable reducibility. We examine when pairs of degrees have a least upper bound. In particular, we show that sufficiently incomparable pairs of degrees do not have a least upper bound but that some incomparable degrees do, and we characterize the degrees which have a least upper bound with every finite equivalence relation. We show that the natural classes of finite, light, and dark degrees are definable in $\operatorname {\mathrm {\mathbf {ER}}}$. We show that every equivalence relation has continuum many self-full strong minimal covers, and that $\mathbf {d}\oplus \mathbf {\operatorname {\mathrm {\mathbf {Id}}}_1}$ needn’t be a strong minimal cover of a self-full degree $\mathbf {d}$. Finally, we show that the theory of the degree structure $\operatorname {\mathrm {\mathbf {ER}}}$ as well as the theories of the substructures of light degrees and of dark degrees are each computably isomorphic with second-order arithmetic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.