Hepatocellular carcinoma (HCC) is the most important primary hepatic cancer and is a common cancer type worldwide. Many aetiological factors have been related to HCC development, such as liver cirrhosis, hepatitis viruses and alcohol consumption. Inactivation of the p53 tumour suppressor gene is one of the most common abnormalities in many tumours, including HCC. p53 is of crucial importance for the regulation of the cell cycle and the maintenance of genomic integrity. In HCC, hepatitis B and C virus (HBV and HCV) effect carcinogenic pathways, independently leading to anomalies in p53 function. Several authors have reported that some HCV proteins, such as the core, NS5A and NS3 proteins, interact with p53 and prevent its correct function. The mechanisms of action of these HCV proteins in relation to p53 are not completely clear, but they might cause its cytoplasmic retention or accumulation in the perinuclear region where the protein is not functional. The identification of the interactions between p53 and HCV proteins is of great importance for therapeutic strategies aimed at reducing the chronicity and/or carcinogenicity of the virus.