The main results deal with conditions for the validity of the weighted convolution inequality ${{\sum }_{n\in \mathbb{Z}}}|{{b}_{n}}\,{{\sum }_{k\in \mathbb{Z}}}{{a}_{n-{{k}^{x}}k}}{{|}^{p}}\,\le \,{{C}^{p\,}}\,{{\sum }_{k\in \mathbb{Z}}}\,{{\left| {{x}_{k}} \right|}^{p}}$ when $p\,\ge \,1$.