We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diffraction peak profiles broaden due to the smallness of crystallites and the presence of lattice defects. Strain broadening of powders of polycrystalline materials is often anisotropic in terms of the hkl indices. This kind of strain anisotropy has been shown to be well interpreted assuming dislocations as one of the major sources of lattice distortions. The knowledge of the dislocation contrast factors are inevitable for this interoperation. In a previous work the theoretical contrast factors were evaluated for cubic crystals for elastic constants in the Zener constant range 0.5≤Az≤8. A large number of ionic crystals and many refractory metals have elastic anisotropy, Az, well below 0.5. In the present work the contrast factors for this lower anisotropy-constant range are investigated. The calculations and the corresponding peak profile analysis are tested on ball milled PbS and Nb and nanocrystalline CeO2.
Dislocation model of strain anisotropy is presented. The dislocation theorem of strain broadening is suggested which means that strain broadening can only be caused by dislocation-type lattice defects. Based on this theorem strain anisotropy is modeled and accounted for by assuming that strain broadening is caused by dislocations or dislocation-type lattice defects. The effect of strain anisotropy is summarized in hkl dependent dislocation contrast factors, which can be either averaged over the permutations of hkl indices or are different for each different reflection. The dislocation model of strain anisotropy provides a powerful tool to analyze slip activity, Burgers vector populations, and plasticity on the basis of line profile analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.