In the Basic Local Independence Model (BLIM) of Doignon and Falmagne (Knowledge Spaces, Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observable response patterns is established by the introduction of a pair of parameters for each of the problems: a lucky guess probability and a careless error probability. In estimating the parameters of the BLIM with an empirical data set, it is desirable that such probabilities remain reasonably small. A special case of the BLIM is proposed where the parameter space of such probabilities is constrained. A simulation study shows that the constrained BLIM is more effective than the unconstrained one, in recovering a probabilistic knowledge structure.