Models and parameters of finite mixtures of multivariate normal densities conditional on regressor variables are specified and estimated. We consider mixtures of multivariate normals where the expected value for each component depends on possibly nonnormal regressor variables. The expected values and covariance matrices of the mixture components are parameterized using conditional mean- and covariance-structures. We discuss the construction of the likelihood function, estimation of the mixture model with regressors using three different EM algorithms, estimation of the asymptotic covariance matrix of parameters and testing for the number of mixture components. In addition to simulation studies, data on food preferences are analyzed.