Comets are a source of prebiotic molecules that likely enriched the early Earth during the Late Heavy Bombardment period. Laboratory experiments that replicate cometary conditions may facilitate understanding of the chemical reactions and supplement observational studies of these icy bodies. Prebiotic compounds, such as formic acid and formaldehyde, have been observed in comets. Furthermore, these compounds can easily be formed in experimental models using a variety of gas combinations and energy sources. We conducted experimental cometary simulations using radiation chemistry tools to obtain insight into the possible fate of formic acid and formaldehyde. The main results suggest a redundant system, signifying that the irradiation of formic acid forms formaldehyde molecules and vice versa. This phenomenon ensures the permanence of prebiotic molecules in high-radiation environments. Additionally, the potential role of forsterite and graphite was explored in cometary simulations. Our experimental results show the differential formation of aldehydes and other carbonyl-containing compounds dependent on the mineral phase present.