We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Three models were used to look at the Southern Ocean Ross Sea sector circulation and hydrography. Two were climate models of low (1°) to intermediate resolution (1/3°), and one was an operational high resolution (1/10°) ocean model. Despite model differences (including physics and forcing), mean and monthly variability aspects of off-shelf circulation are consistently represented, and could imply bathymetric constraints. Western and eastern cyclonic gyral systems separated by shallow bathymetry around 180°E redistributing water between the wider Southern Ocean and the Ross Sea are found. Some model seasonal gyral transports increase as the Antarctic Circumpolar Current transport decreases. Model flows at 900 m at the gyral eastern end compare favourably with float data. On-shelf model depth-averaged west–east flow is relatively consistent with that reconstructed from longline fishing records. These flows have components associated with isopycnal gradients in both light and dense waters. The climate models reproduce characteristic isopycnal layer inflections (‘V’s) associated with the observed Antarctic Slope Front and on-shelf deep water formation, and these models transport some 4 Sv of this bottom water northwards across the outer 1000 m shelf isobath. Overall flow complexity suggests care is needed to force regional Ross Sea models.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.