We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Methane is a potent greenhouse gas and can create explosion risk at elevated concentrations. Because there are several major anthropogenic sources of methane and other natural sources of methane that are elevated due to climate feedbacks, there is currently no scientific consensus on the cause of increasing global atmospheric methane concentrations. Methane dissolved in groundwater can also have multiple sources that are difficult to distinguish. Luckily, methane has several naturally occurring stable and radioactive isotopes that can help to differentiate these sources. In this chapter I will present an overview of the isotopic composition of various methane sources, including stable and radioactive isotopes of both carbon and hydrogen; give examples of using isotopes to decipher atmospheric methane sources at the local, regional, and global level; and then give examples of using isotopes to distinguish between major sources of methane in groundwater. All of these examples will include natural gas sources, since that is the theme of this book, although isotope tools can be applied to many other types of methane sources.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.