We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is twofold. The first part is to introduce relative-$\chi_{\alpha}^{2}$, Jensen-$\chi_{\alpha}^{2}$ and (p, w)-Jensen-$\chi_{\alpha}^2$ divergence measures and then examine their properties. In addition, we also explore possible connections between these divergence measures and Jensen–Shannon entropy measure. In the second part, we introduce $(p,\eta)$-mixture model and then show it to be an optimal solution to three different optimization problems based on $\chi_{\alpha}^{2}$ divergence measure. We further study the relative-$\chi_{\alpha}^{2}$ divergence measure for escort and arithmetic mixture densities. We also provide some results associated with relative-$\chi_{\alpha}^{2}$ divergence measure of mixed reliability systems. Finally, to demonstrate the usefulness of the Jensen-$\chi_{\alpha}^{2}$ divergence measure, we apply it to a real example in image processing and present some numerical results. Our findings in this regard show that the Jensen-$\chi_{\alpha}^{2}$ is an effective criteria for quantifying the similarity between two images.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.