We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A study of the Euler equation on the basis of one-dimensional velocity triangles provides insights into energy transfer in compressors, emphasising the importance of the centrifugal effect in the impeller, the diffusion of the flow and the degree of reaction. An introduction to thermodynamics is given leading to the steady flow energy equation (SFEE), which is the first law of thermodynamics applied to a fixed region with steady flow passing through it. The SFEE is used to account for the changes in fluid properties along the flow path and shows that the bookkeeping of the energy transfer needs to be carried out using the total enthalpy or the rothalpy. The study of compressors needs to consider the efficiency of processes concerned. The Gibbs equation, a form of the second law of thermodynamics, provides a rigorous way to do this through the thermodynamic state variable known as entropy. In the context of energy transfer, the entropy production characterises the lost work in the machine due to dissipation losses. Isentropic and polytropic compression processes are explained. The important concept of the aerodynamic work and the value of a polytropic analysis are considered.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.