We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A novel image-based method is presented in this paper to estimate the poses of commercial aircrafts in a runway end safety area. Based on the fact that similar poses of an aircraft will have similar geometry structures, this method first extracts features to describe the structure of an aircraft's fuselage and aerofoil by RANdom Sample Consensus algorithm (RANSAC), and then uses the central moments to obtain the aircrafts’ pose information. Based on the proposed pose information, a two-step feature matching strategy is further designed to identify an aircraft's particular pose. In order to validate the accuracy of the pose estimation and the effectiveness of the proposed algorithm, we construct a pose database of two common aircrafts in Asia. The experiments show that the designed low-dimension features can accurately capture the aircraft's pose information and the proposed algorithm can achieve satisfied matching accuracy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.