We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study relationships between the stellar populations and interstellar medium in massive galaxies using the Galex Arecibo SDSS Survey (GASS). The sample consists of HI-observations (~1000 galaxies) and complementary H2-observations (330 galaxies) and long-slit spectroscopy (230 galaxies). Luminosity-weighted stellar population ages, metallicitites and element abundance ratios, are derived by fitting stellar population models of absorption line indices. We find that the ages correlate more strongly with molecular gas fraction (MH2/M*) than with neutral Hydrogen fraction (MHI/M*). This result strengthens the theory that H2 is a better tracer of star-formation than HI. The sample is dominated by negative metallicity-gradients and flat Mg/Fe-gradients. Galaxies with high MH2/M*-ratios show in general flat or weakly negative age-gradients. For low MH2/M*-ratios the age-gradients are overall negative. These results are in agreement with the inside-out galaxy formation scenario. For galaxies with high r90/r50-ratios, a sub-population show positive age-gradients indicating additional formation channels. Furthermore, for galaxies with high MH2/M*-ratios more massive systems have older stellar populations in their centers, suggesting downsizing within the inside-out formation scenario.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.