If Z is the branching mechanism for a supercritical Galton-Watson tree with a single progenitor and E[ZlogZ] < ∞, then there is a branching measure μ defined on ∂Γ, the set of all paths ξ which have a unique node ξ|n at each generation n. We use the natural metric ρ(ξ,η) = e−n, where n = max{k : ξ|k = η|k}, and observe that the local dimension index is d(μ,ξ) = limn→∞ log(μB(ξ|n))/(-n) = α = logm, for μ-almost every ξ. Our objective is to consider the exceptional points where the above display may fail. There is a nontrivial ‘thin’ spectrum for ̄d(μ,ξ) when p1 = P{Z = 1} > 0 and Z has finite moments of all positive orders. Because ̱d(μ,ξ) = a for all ξ, we obtain a ‘thick’ spectrum by introducing the ‘right’ power of a logarithm. In both cases, we find the Hausdorff dimension of the exceptional sets.