We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two established staging models outline the longitudinal progression in bipolar disorder (BD) based on episode recurrence or inter-episodic functioning. However, underlying neurobiological mechanisms and corresponding biomarkers remain unexplored. This study aimed to investigate if global and (sub)cortical brain structures, along with brain-predicted age difference (brain-PAD) reflect illness progression as conceptualized in these staging models, potentially identifying brain-PAD as a biomarker for BD staging.
Methods
In total, 199 subjects with bipolar-I-disorder and 226 control subjects from the Dutch Bipolar Cohort with a high-quality T1-weighted magnetic resonance imaging scan were analyzed. Global and (sub)cortical brain measures and brain-PAD (the difference between biological and chronological age) were estimated. Associations between individual brain measures and the stages of both staging models were explored.
Results
A higher brain-PAD (higher biological age than chronological age) correlated with an increased likelihood of being in a higher stage of the inter-episodic functioning model, but not in the model based on number of mood episodes. However, after correcting for the confounding factors lithium-use and comorbid anxiety, the association lost significance. Global and (sub)cortical brain measures showed no significant association with the stages.
Conclusions
These results suggest that brain-PAD may be associated with illness progression as defined by impaired inter-episodic functioning. Nevertheless, the significance of this association changed after considering lithium-use and comorbid anxiety disorders. Further research is required to disentangle the intricate relationship between brain-PAD, illness stages, and lithium intake or anxiety disorders. This study provides a foundation for potentially using brain-PAD as a biomarker for illness progression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.